
International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Adaptable Practices for Curbing XDoS Attacks
A. Karthigeyan, C. Andavar, A.Jaya Ramya

Abstract— An XDoS attack intends to exhaust the system resources of the server hosting a web service. An XDoS attack is done through

SOAP messages. Cyber-criminals use distributed denial-of-service attacks (DDoS) and XML denial-of-service attacks (XDoS) to extort

money from online service providers. This kind of attacks is normally targeted at a particular service provider to exhaust the network and

system resources of the provider. This paper proposes a defense system against XDoS attacks by adapting some of the best practices for

countering these XDoS attacks. The system is built on Web Services. It can be constructed and reconfigured easily by an attack victim.

Index Terms— Web Service, XDoS, DDoS, XML, SOAP

——————————  ——————————

1 INTRODUCTION

oS attacks were highly popular with the hacker
community, and it’s easy to understand. A single ―script
kiddie‖ attacker with a minimal amount of skill and

resources could generate a flood of TCP SYN (for synchronize)
requests sufficient to knock a site out of service. Over the
years, SYN flood attacks have been largely mitigated by
improvements in Web server software and network hardware.
An XDoS attack is a content-borne attack whose purpose is to
shut down a web service or system running that service. The 3
main strategies used in XDoS attacks are: Oversized payload,
External entity references, Entity expansion XML DoS attacks
are extremely asymmetric: to deliver the attack payload, an
attacker needs to spend only a fraction of the processing
power or bandwidth that the victim needs to spend to handle
the payload. Worse still, DoS vulnerabilities in code that
processes XML are also extremely widespread. Even if you’re
using thoroughly tested parsers, your code can still be
vulnerable unless you take explicit steps to protect it.

The remainder of this paper is organized as follows. In the

next section, we will introduce the basic concepts such as XML
Web Service, Section III and IV describes Approaches and
Limitation of Existing System. Section V discusses about
Proposed Practices Adapted To Overcome XDoS Attacks and
Architecture and finally, the paper concludes with the future
work in Section VI.

2. Background

2.1 XML Web service

An XML Web service is a programmable entity that provides
a particular element of functionality, such as application logic,
and is accessible to any number of potentially disparate systems

using ubiquitous Internet standards, such as XML
Detailed submission guidelines can be found on the author
resources Web pages. Author resource guidelines are specific
and HTTP. XML Web services depend heavily upon the broad
acceptance of XML and other Internet standards to create an
infrastructure that supports application interoperability at a
level that solves many of the problems that previously
hindered such attempts. An XML Web service can be used
internally by a single application or exposed externally over
the Internet for use by any number of applications. Because it
is accessible through a standard interface, an XML Web
service allows heterogeneous systems to work together as a
single web of computation. Instead of pursuing the generic
capabilities of code portability, XML Web services provide a
viable solution for enabling data and system interoperability.
XML Web services use XML-based messaging as a
fundamental means of data communication to help bridge the
differences that exist between systems that use incongruent
component models, operating systems, and programming
languages. Developers can create applications that weave
together XML Web services from a variety of sources in much
the same way that developers traditionally use components
when creating a distributed application.

One of the core characteristics of an XML Web service is the
high degree of abstraction that exists between the
implementation and the consumption of a service. By using
XML-based messaging as the mechanism by which the service
is created and accessed, both the XML Web service client and
the XML Web service provider are freed from needing any
knowledge of each other beyond inputs, outputs, and location.

XML Web services are enabling a new era of distributed
application development. It is no longer a matter of object
model wars or programming language beauty contests. When
systems are tightly coupled using proprietary infrastructures,
this is done at the expense of application interoperability.
XML Web services deliver interoperability on an entirely new
level that negates such counterproductive rivalries. As the
next revolutionary advancement of the Internet, XML Web
services will become the fundamental structure that links
together all computing devices.

D

————————————————

 A.Karthigeyan is currently working as a Senior Lecturer in the

Department of CSE at Shree Motilal Kanhaiyalal Fomra Institute of

Technology, affiliated to Anna University, Chennai.

E-mail:akarthi78@yahoo.co.in

 C. Andavar is currently working as a Senior System Analyst in Ramco

System, Chennai. E-mail:andavar.vnr@gmail.com

 A. Jaya Ramya is working as a software programmer in Mielsoft

technologies, Puducherry. Email:ajramya.06@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

3. Approaches of Existing System

XDoS attacks intend to exhaust the victim’s system resources
and network bandwidth. The system resources can be
exhausted by processing the requests sent in by the attacker.
The attacker can exhaust the victim's network bandwidth by
directing a large volume of traffic toward the victim’s site. The
scheme is avoids the network bandwidth of the Web Services
providers being exhausted by hiding the locations of the Web
Services providers from the public.

To avoid the system resources being exhausted by the
attackers, the system carries out request message
authentication and validation before the requests are
processed by the Web Services providers. The scheme has two
modes, i.e. the normal mode and the under-attack mode. An
operations provider decides which mode the system works in.
When an operations provider does not detect any attack
activity, the system works in the normal mode. Otherwise, the
system works in the under-attack mode. To minimize the
delay in responding to users’ requests, a service request is
only authenticated and validated when the system works in
the under-attack mode.

An operations provider subscribes to the service of a
ServiceHub. The WSDL file describing the operations (i.e.
services) provided by the operations provider binds the
operations to the ServiceHub. Thus, the public perceive the
operations as being hosted by the ServiceHub. As a result, all
service requests are sent to the ServiceHub. Since an
operations provider’s address is unknown to the attackers, the
attackers cannot send service requests directly to the
operations provider.

Thus, the attackers cannot easily exhaust the network
bandwidth of the operations provider. When working in the
normal mode, clients' service requests do not need to be
authenticated and validated. Figure 3.1(a) shows how the
system works in the normal mode. Service requests are first
sent to the ServiceHub (step 1). The ServiceHub forwards the
requests to the operations provider (step 2). The operations
provider sends the results back to the client through the
ServiceHub (step 3 and 4).

a) Normal Mode

b) Under-attack Mode

Figure 3.1 Client-Server Request/Response Operation

 In the under-attack mode, the service requests need to be
authenticated and validated before being processed. The
operations provider only processes a service request if the
request can be successfully authenticated and validated.
Therefore, the service provider does not waste system
resources to process the attackers’ requests. However, the
authentication and validation mechanism also uses system
resources. An attacker can still deplete the victim’s system
resources by sending in a large amount of requests that force
the victim to authenticate and validate.

To counter this kind of attack, an operations provider, say op,
subscribes the services provided by other service providers to
delegate the authentication and validation task to the other
ser-vice providers. The providers of the authentication and
validation service are called verifiers. Since the authentication
and validation is carried out by the verifiers, the attacker will
not be able to exhaust op’s system resources. Figure 3.1(b)
shows how the system works in the under-attack mode.

The operations provider and the verifiers provide their
services through the ServiceHub. They send and receive
messages through the ServiceHub. Only the ServiceHub
knows their IP addresses. Thus, they cannot exchange
messages directly. In the under-attack mode, the operations
provider informs the ServiceHub of the authentication and
validation services that it sub-scribes to. The ServiceHub
forwards the service requests to the corresponding verifiers.
During the authentication process, the verifiers might need to
exchange authentication information with the clients.

The ServiceHub is responsible for forwarding the messages
ex-changed between the clients and the verifiers. If a service
re-quest is authenticated and validated successfully, the
verifier sends the service request to the operations provider
through the ServiceHub. After processing the request, the
operations provider sends the result back to the client through
the ServiceHub.

4. Limitations of Existing System

1. Limiting the number of connections that a server will
accept from a given IP address at any one time. Such a limit
may help to prevent automated processes from exhausting the

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

server's resources
2. More strictly limiting the proposed restrictions
depending on connection type, authentication type, or user
class.
3. Less strict limits for server administrators compared
to entities associated with registered accounts, and for entities
associated with registered accounts compared to anonymous
entities.
4. Less strict limits for entities that authenticate via
strong authentication methods compared to entities that
authenticate via weaker authentication methods
5. Less strict limits for connections made via the TCP
binding compared to connections made via the HTTP binding

5. Proposed Practices Adapted To Overcome XDoS

Attacks

The Proposed practices of XDoS Security in Web Server is
implemented by means of following some of the best practices
are given.

 Max Message Size: Limit the size of payload to efficiently use
CPU Cycles. When size exceeds discard the request/notify
error <message size too big>
Max Duration For A Host: Limit the time to process a soap
request. When time exceeds discard the request/notify time-
out error.
Request Rate From A Host: Limit the maximum number of
requests that can be received, in the interval period, from any
one host. When time exceeds discard the request/notify limit
exceeded.
Block Interval: The service will block access after one of the
thresholds have been reached. The service will be available
again once block interval is over.

Override Parser Limits:

(i) XML Attribute Count: Limits the number of
attributes for any given element. Specify an integer.
(ii) XML Bytes Scanned: Limits the number of bytes
contained in any given XML message. A value of 0 enforces no
limit.
(iii) XML Element Depth: Limits the depth of nested
elements in an XML message.
(iv) XML Node Size: Limits the size of any one XML node.
The minimum allowed value is 1. The defined value can be
larger than the value for the XML Bytes Scanned property.
However, the value for the XML Bytes Scanned property takes
precedence.

5.1 Proposed Architecture

The Proposed architecture describes the process of SOAP
message. When a client invokes/calls a web service, it sends a
request to the web service. This request is serialized into a
SOAP message and sent over the network. On reaching the
server side, this SOAP message is deserialized and the web
service reads the request from the client. Depending on the

client request, web service performs required operations and
generates responses. This response is serialized into SOAP
message at the server and deserialized at the client side.
Similarly, the SOAP message is serialized at the server and
deserialized at the client side when the response is sent from
the server to the client. Thus the SOAP message goes through
a process of serialization and deserialization both at the client
and the server side. The various stages of SOAP messages are
available in the SOAPMessageStage enumeration.

SOAP Extensions are components that can access the SOAP

messages. Think of them as objects that sit on the HTTP
pipeline who can pick the SOAP messages at each stage and
manipulate them.

When the HTTP request comes from the client, it is handled

by aspnet_isapi.dll. The appropriate handler for web services
will be called and the web method will be invoked. It is during
this stage where the SOAP Extension comes into picture. The
SOAP Extension can access the SOAP message before and
after calling the web method. Thus we now know in a vague
manner what a SOAP extension is and where it fits in the life
cycle of a SOAP message.

SOAP Extensions can be used for a number of purposes.

They can be used to secure web services, compress the verbose
SOAP messages, log messages etc.

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

5.2 Detailed Process Flow Structure

5.3 Workflow of the Proposed System

• The Client initiates a request to the server using a

SOAP request.
• The request message is being deflated and then it is

send to the server.
• Server side receives the deflated message from the

client.
• The process of converting deflated message to

inflated message takes place in the server side.
• Based on the client’s request, the requested service is

being invoked from the server.
• The invoked service on the server side is being

deflated and it has been sent as response for the client request
in the form of SOAP response.

• The client receives the response from the server.
• Again in the client end, the process of inflating takes

place so as to view the response.

6. Implementation

6.1 Request Rate From Host

• Client submits the username and password.
• The client data is being stored in the form of a table
which contains Username, Password, Login Time, client IP
address and status are stored in the server machine .
• If a client request exceeds the threshold limit during
the given time limit an exception is being raised stating that
rate-of-request exceeded.
• On the other hand if not, the process the request.
• Note: Threshold value here means an optimal value.
This will mentioned in all the other solutions

6.2 Oversized Payload

 Client sends a SOAP request which contains the XML

file as an input.
 Calculate the size of the request file. If the size

exceeds the threshold limit, then an exception is being raised
stating that over sized payload.
 On the other hand if not, perform further processing.

6.3 Block Interval

• A client submits the username and password.
• On authentication if the client has found the
username or password as incorrect, the client is given a
maximum of 3 chances (threshold limit).
• If the threshold limit exceeds, the client account will

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

be pushed to the blocked state for two hours.
• After two hours, the client can be allowed to make
another try.

6.4 Over-riding Parser Limits

 A client sends a SOAP request which contains an

XML document
 On scanning the document, first the no. of attributes

contained in it is compared with the threshold limit, if
exceeded, an exception is raised.
 If the attribute count is within the threshold

limit, then the child count is taken into account and it is
compared within the limit, if exceeded and exception is
raised

 On the other hand if the child count is within

the limit, then the depth of the document is compared with
the threshold limit, if exceeded, an exception is raised, else
the request is processed.

 7. Conclusion and Future Enhancement

 This paper proposes a system adequate care has been
taken and some of the best practices for countering the XDoS
attacks has been implemented successfully. The performance
of the system has been measured and it is found that faster
detection allows the system to resist such attacks. Though the
system has been developed by adapting the best practices,
not all the practices has been adapted. The system can further
be enhanced by following at-most best standards.

 References

 [1] X. Ye, S. Singh. A SOA Approach to Counter DDoS

Attacks, Proc. of the IEEE Intl. Conference on Web Services
(ICWS'07), pp. 567-574, 2007

 [2] S. Padmanabhuni, V. Singh, K. M. S. Kumar, and A.

Chatterjee, Preventing Service Oriented Denial of Service
(PreSODoS): A Proposed Approach, Proc. of the IEEE Intl.
Conference on Web Services (ICWS'06), pp577 – 584, 2006

 [3] R. Jaamour, XML security: Preventing XML bombs,

http://searchsoftwarequality.techtarget.com/expert/Kno
wledg ebaseAnswer/0,289625,sid92_gci1168442,00.html

 [4] B. Schneier, Applied Cryptography,Second Edition, John

Wiley & Sons, 1996 T. Anderson, T. Roscoe, and D.
Wetherall. Preventing Internet denial-of-service with
capabilities. In Proc. Of Hotnets-II, Cambridge, MA, Nov.
2003

 [5]M. Brambilla, S. Ceri, M. Passamani, A. Riccio: Managing

Asynchronous Web Services Interactions, Proc. Of the IEEE
Intl Conf on Web Services, 2004

 [6] E. Kohler, Denial of Service Defense in Practice and Theory,

USENIX’05, http://www.usenix.org/event/usenix05-
/tech/slides/kohler.pdf

 [7] R. Housley, W. Polk, W. Ford, and D. Solo, Internet X.509

Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, IETF RFC3280

 [8] V. D. Gligor. Guaranteeing access in spite of distributed

service-flooding attacks, in Proceedings of the Security
Protocols Workshop, April 2003

 [9] Alexandra Schäfer and Werner Rechert ,"Security and Web

Services Specifications, Technologies and Frameworks"
,University of Technology Darmstadt Germany, 2002.

 [11]Alex Stamos, "Attack for service : the Next generation

Vulnerable Enterprice App." ,ISEC, Black HAT Briefings,
bh-us-o5.pdf.

 [12] (2006) Web service security. [Online]. Available:

http://www.oasisopen. org/committees/wss/

 [13] (2002) Xml-signature syntax and processing. [Online].

Available: http://www.w3.org/TR/xmldsig-core/

 [14] M. McIntosh and P. Austel, ―Xml signature element

wrapping attacks and counterme

 [15] asures,‖ in SWS05: Proceedings of the 2005 workshop on
Secure web services. New York, USA: ACM, 2005, pp. 20–27.
[Online]. Available:
http://doi.acm.org/10.1145/1103022.110302

 [16] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS:
Anarchitecture for mitigating DDoS attacks. Journal on
SelectedAreas in Communications, 21(1):176–188, 2004

 [17] W. Morein and A. Stavrou and D. Cook and A.Keromytis
and V. Misra and D. Rubenstein, Using GraphicTuring Tests

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

to Counter Automated DDoS Attacks AgainstWeb Servers,
Proc. of the 10th ACM Intl. Conf.

 [18] S. Gajek, L. Liao, and J. Schwenk. Breaking and fixing the
inline approach. In Proceedings of the 2007 ACM Workshop
on Secure Web Services (SWS’07), pages 37–42, Fairfax,
Virginia, USA, November 2007. Association for Computing
Machinery.

 [19] P. Grosso, E. Male, J. Marsh, and N.Walsh. Xpointer

framework. W3C Recommendation, 2003.

 [20] N. Gruschka. Protection Web Service by extended and

efficient message validation. PhD thesis, University of Kiel,
 2008.

 [21] N. Gruschka and N. Luttenberger. Protecting Web

Services from DoS Attacks by SOAP Message Validation. In
Proceedings of the IFIP TC-11 21. International Information
Security Conference (SEC 2006), pages 171–182, 2006.

 [22] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker.
 Web Services Security: SOAP Message Security 1.1

(WSSecurity
 2004). 2006.
 [23] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
 Internet denial-of-service with capabilities. In Proc. of
 Hotnets-II, Cambridge, MA, Nov. 2003

